Skip to main content

Architecture Overview

Juro v2.0.0 is built on a modern, enterprise-grade architecture designed for scalability, performance, and comprehensive compliance scanning across multiple regulations and standards.

πŸ—οΈ System Architecture​

High-Level Architecture​

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Juro v2.0.0 Platform β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ VS Code β”‚ β”‚ GitHub β”‚ β”‚ CLI β”‚ β”‚ AI β”‚ β”‚
β”‚ β”‚ Extension β”‚ β”‚ Actions β”‚ β”‚ Tools β”‚ β”‚ Agents β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Integration Layer (MCP) β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ GitHub β”‚ β”‚ Compliance β”‚ β”‚ Performance β”‚ β”‚ Auto β”‚ β”‚
β”‚ β”‚ Actions β”‚ β”‚ Engine β”‚ β”‚ Optimizationβ”‚ β”‚Detectionβ”‚ β”‚
β”‚ β”‚ Service β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ Engine β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Core Services Layer β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ MCP β”‚ β”‚ Service β”‚ β”‚ Cache β”‚ β”‚ Rule β”‚ β”‚
β”‚ β”‚ Server β”‚ β”‚ Container β”‚ β”‚ Manager β”‚ β”‚ Manager β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Data & Storage Layer β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ Rule β”‚ β”‚ Cache β”‚ β”‚ Logs β”‚ β”‚ Config β”‚ β”‚
β”‚ β”‚ Packs β”‚ β”‚ Storage β”‚ β”‚ Storage β”‚ β”‚ Storage β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ”§ Core Components​

MCP Server​

  • Protocol: Model Context Protocol (MCP) implementation
  • Ports: HTTP API (8080), MCP TCP (3000)
  • Features: Tool registration, request handling, response formatting
  • Scalability: Horizontal scaling with load balancing

Service Container​

  • Dependency Injection: IoC container for service management
  • Service Registration: Automatic service discovery and registration
  • Lifecycle Management: Service initialization, startup, and shutdown
  • Configuration: Centralized configuration management

Compliance Engine​

  • Rule Processing: Multi-regulation rule processing
  • Pattern Matching: Advanced regex and context-aware matching
  • Violation Detection: Real-time violation identification
  • Scoring System: Algorithm-based compliance scoring

πŸš€ Performance Architecture​

CacheManager​

class CacheManager {
// Intelligent caching system
async cacheRulePack(regulation: string, rules: Rule[]): Promise<void>
async cacheScanResult(filePath: string, result: ScanResult): Promise<void>
async getCachedResult(filePath: string): Promise<ScanResult | null>
async invalidateCache(pattern: string): Promise<void>
}

WorkerPool​

class WorkerPool {
// Parallel processing architecture
async createWorkers(count: number): Promise<void>
async distributeTask(task: ScanTask): Promise<ScanResult>
async scaleWorkers(targetCount: number): Promise<void>
async getWorkerStats(): Promise<WorkerStats[]>
}

MemoryManager​

class MemoryManager {
// Advanced memory management
async processLargeFile(filePath: string, chunkSize: number): Promise<ScanResult>
async cleanupMemory(): Promise<void>
async monitorMemoryUsage(): Promise<MemoryStats>
async allocateMemory(size: number): Promise<Buffer>
}

πŸ”Œ Integration Services​

GitHub Actions Service​

class GitHubActionsService {
// Complete GitHub Actions integration
async addWorkflow(repoPath: string, config: WorkflowConfig): Promise<WorkflowResult>
async createPRWorkflow(repoPath: string, config: PRConfig): Promise<WorkflowResult>
async runPRComplianceCheck(prData: PRData): Promise<ComplianceResult>
async generateComplianceReport(results: ScanResult[]): Promise<Report>
async sendComplianceNotifications(data: ComplianceData): Promise<NotificationResult>
}

VS Code Extension Service​

class VSCodeExtensionService {
// Real-time IDE integration
async scanFile(filePath: string): Promise<ScanResult>
async scanWorkspace(workspacePath: string): Promise<ScanResult[]>
async getComplianceScore(filePath: string): Promise<ComplianceScore>
async getViolations(filePath: string): Promise<Violation[]>
}

Auto-Detection Engine​

class AutoDetectionEngine {
// Intelligent project detection
async detectProjectType(projectPath: string): Promise<ProjectType>
async mapRegulations(projectType: ProjectType): Promise<Regulation[]>
async generateConfiguration(projectType: ProjectType): Promise<Configuration>
async downloadRulePacks(regulations: Regulation[]): Promise<RulePack[]>
}

πŸ“Š Data Flow Architecture​

Scanning Workflow​

1. Request Received (MCP/HTTP)
↓
2. Service Container Resolution
↓
3. Auto-Detection Engine (Project Type + Regulations)
↓
4. Rule Pack Loading (Cache Check)
↓
5. Worker Pool Task Distribution
↓
6. Parallel File Processing
↓
7. Compliance Engine Analysis
↓
8. Result Aggregation
↓
9. Cache Storage
↓
10. Response Formatting
↓
11. Client Response

Performance Optimization Flow​

1. File Change Detection
↓
2. Cache Lookup
↓
3. Incremental Processing (if cached)
↓
4. Worker Pool Distribution
↓
5. Chunked File Processing
↓
6. Memory Management
↓
7. Result Caching
↓
8. Performance Metrics Collection

πŸ”’ Security Architecture​

Authentication & Authorization​

  • API Key Management: Secure API key validation
  • Token-Based Auth: JWT tokens for service communication
  • Role-Based Access: Granular permission system
  • Audit Logging: Comprehensive security event logging

Data Protection​

  • Encryption at Rest: All cached data encrypted
  • Encryption in Transit: TLS 1.3 for all communications
  • Secure Storage: Encrypted rule packs and configurations
  • Data Anonymization: PII protection in logs and metrics

πŸ“ˆ Scalability Architecture​

Horizontal Scaling​

  • Load Balancing: Multiple MCP server instances
  • Service Discovery: Automatic service registration
  • Health Checks: Continuous service monitoring
  • Auto-Scaling: Dynamic resource allocation

Vertical Scaling​

  • Worker Pool Scaling: 1-8 workers based on load
  • Memory Optimization: Dynamic memory allocation
  • CPU Optimization: Multi-core processing
  • I/O Optimization: Async file operations

πŸ”„ Deployment Architecture​

Container Deployment​

# Docker Compose Example
version: '3.8'
services:
juro-mcp-server:
image: juro/mcp-server:v2.0.0
ports:
- "3000:3000"
- "8080:8080"
environment:
- NODE_ENV=production
- WORKER_COUNT=4
- CACHE_ENABLED=true
volumes:
- ./config:/app/config
- ./cache:/app/cache

Kubernetes Deployment​

# Kubernetes Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: juro-mcp-server
spec:
replicas: 3
selector:
matchLabels:
app: juro-mcp-server
template:
metadata:
labels:
app: juro-mcp-server
spec:
containers:
- name: juro-mcp-server
image: juro/mcp-server:v2.0.0
ports:
- containerPort: 3000
- containerPort: 8080
resources:
requests:
memory: "512Mi"
cpu: "500m"
limits:
memory: "2Gi"
cpu: "2000m"

πŸ“Š Monitoring & Observability​

Metrics Collection​

  • Performance Metrics: Scan duration, throughput, resource usage
  • Business Metrics: Compliance scores, violation trends
  • System Metrics: CPU, memory, disk, network usage
  • Custom Metrics: User-defined performance indicators

Logging Architecture​

  • Structured Logging: JSON-formatted logs with context
  • Log Levels: DEBUG, INFO, WARN, ERROR, FATAL
  • Log Aggregation: Centralized log collection and analysis
  • Log Retention: Configurable log retention policies

Health Checks​

  • Liveness Probes: Service availability checks
  • Readiness Probes: Service readiness for traffic
  • Dependency Checks: External service availability
  • Performance Checks: Response time and throughput validation

πŸ”§ Configuration Management​

Environment Configuration​

{
"mcp": {
"port": 3000,
"host": "0.0.0.0",
"protocol": "tcp"
},
"performance": {
"workerPool": {
"minWorkers": 1,
"maxWorkers": 8,
"defaultWorkers": 4
},
"caching": {
"enabled": true,
"ttl": 3600,
"maxSize": "1GB"
}
},
"compliance": {
"regulations": ["GDPR", "DORA"],
"severityThreshold": "MEDIUM",
"maxFileSize": "50MB"
}
}

Dynamic Configuration​

  • Hot Reloading: Configuration changes without restart
  • Environment-Specific: Different configs for dev/staging/prod
  • Secret Management: Secure handling of sensitive configuration
  • Validation: Configuration schema validation

πŸš€ Future Architecture Plans​

Phase 3: Advanced Integrations​

  • Multi-Cloud Support: AWS, Azure, GCP integrations
  • Enterprise SSO: SAML, OIDC integration
  • Advanced Analytics: ML-powered compliance insights
  • Custom Rule Engine: User-defined rule creation

Phase 4: AI Enhancement​

  • Natural Language Processing: Advanced AI queries
  • Predictive Compliance: ML-based violation prediction
  • Automated Fixes: AI-generated code fixes
  • Intelligent Recommendations: Context-aware suggestions

Ready to understand Juro's architecture? Explore the technical details or get started with implementation!