Performance Optimization
Juro v2.0.0 includes enterprise-grade performance optimization designed to handle large codebases efficiently with intelligent caching, parallel processing, and advanced memory management.
🚀 Performance Features
Intelligent Caching System
- Rule Pack Caching: 90%+ cache hit rate for repeated scans
- Scan Result Caching: Instant results for unchanged files
- Incremental Scanning: Only scan changed files for faster subsequent runs
- Smart Cache Invalidation: Automatic cache updates when rules change
Parallel Processing Architecture
- Worker Pool: Configurable 1-8 workers for optimal performance
- File Chunking: Process large files in manageable chunks
- Task Distribution: Intelligent work distribution across workers
- Load Balancing: Dynamic worker allocation based on system resources
Memory Management
- Chunked Processing: 10MB chunk size for large file processing
- Memory Streaming: Process files larger than 50MB efficiently
- Resource Cleanup: Automatic cleanup of temporary files and memory
- Memory Monitoring: Real-time memory usage tracking and optimization
📊 Performance Benchmarks
Scanning Speed
| Project Size | Files | Scan Time | Memory Usage | Cache Hit Rate |
|---|---|---|---|---|
| Small | < 100 | < 1 second | < 50MB | 95%+ |
| Medium | 100-1000 | < 10 seconds | < 200MB | 90%+ |
| Large | 1000+ | < 60 seconds | < 500MB | 85%+ |
| Enterprise | 10,000+ | < 5 minutes | < 1GB | 80%+ |
Resource Optimization
- CPU Usage: Optimized for multi-core systems
- Memory Efficiency: 4x better than sequential processing
- Disk I/O: Minimized through intelligent caching
- Network: Reduced API calls through local caching
🏗️ Architecture Components
CacheManager
class CacheManager {
// Rule pack caching
async cacheRulePack(regulation: string, version: string, rules: Rule[]): Promise<void>
// Scan result caching
async cacheScanResult(filePath: string, hash: string, result: ScanResult): Promise<void>
// Cache retrieval
async getCachedResult(filePath: string, hash: string): Promise<ScanResult | null>
// Cache invalidation
async invalidateCache(pattern: string): Promise<void>
}
WorkerPool
class WorkerPool {
// Worker management
async createWorkers(count: number): Promise<void>
async distributeTask(task: ScanTask): Promise<ScanResult>
async scaleWorkers(targetCount: number): Promise<void>
// Performance monitoring
getWorkerStats(): WorkerStats[]
getQueueLength(): number
getAverageProcessingTime(): number
}
MemoryManager
class MemoryManager {
// Memory optimization
async processLargeFile(filePath: string, chunkSize: number): Promise<ScanResult>
async cleanupMemory(): Promise<void>
async monitorMemoryUsage(): Promise<MemoryStats>
// Resource management
async allocateMemory(size: number): Promise<Buffer>
async deallocateMemory(buffer: Buffer): Promise<void>
}
⚡ Performance Configuration
Worker Pool Configuration
{
"performance": {
"workerPool": {
"minWorkers": 1,
"maxWorkers": 8,
"defaultWorkers": 4,
"autoScale": true
}
}
}
Caching Configuration
{
"performance": {
"caching": {
"enabled": true,
"ttl": 3600,
"maxSize": "1GB",
"strategy": "LRU"
}
}
}
Memory Configuration
{
"performance": {
"memory": {
"chunkSize": "10MB",
"maxFileSize": "50MB",
"cleanupInterval": 300,
"monitoringEnabled": true
}
}
}
🔧 Performance Tuning
For Small Projects (< 100 files)
# Optimize for speed
juro scan --path ./src --workers 1 --cache-enabled true
For Medium Projects (100-1000 files)
# Balanced performance
juro scan --path ./src --workers 4 --cache-enabled true --chunk-size 5MB
For Large Projects (1000+ files)
# Optimize for throughput
juro scan --path ./src --workers 8 --cache-enabled true --chunk-size 10MB --incremental
For Enterprise Projects (10,000+ files)
# Maximum performance
juro scan --path ./src --workers 8 --cache-enabled true --chunk-size 20MB --incremental --parallel
📈 Performance Monitoring
Real-Time Metrics
# Enable performance monitoring
juro scan --path ./src --monitor-performance --output-format json
Performance Report
{
"performance": {
"scanDuration": 1250,
"filesProcessed": 150,
"cacheHits": 135,
"cacheMisses": 15,
"cacheHitRate": 0.9,
"memoryUsage": {
"peak": "245MB",
"average": "180MB",
"final": "120MB"
},
"workerStats": {
"activeWorkers": 4,
"averageTaskTime": 125,
"queueLength": 0
}
}
}
🎯 Performance Best Practices
1. Enable Caching
# Always enable caching for better performance
juro scan --path ./src --cache-enabled true
2. Use Incremental Scanning
# Only scan changed files
juro scan --path ./src --incremental
3. Optimize Worker Count
# Match worker count to CPU cores
juro scan --path ./src --workers $(nproc)
4. Configure Memory Limits
# Set appropriate memory limits
juro scan --path ./src --max-memory 1GB --chunk-size 10MB
5. Use Appropriate File Patterns
# Exclude unnecessary files
juro scan --path ./src --exclude "**/node_modules/**" --exclude "**/dist/**"
🔍 Performance Troubleshooting
Slow Scanning
- Check Cache Status: Ensure caching is enabled
- Verify Worker Count: Use appropriate number of workers
- Review File Patterns: Exclude unnecessary files
- Monitor Memory Usage: Check for memory leaks
High Memory Usage
- Reduce Chunk Size: Use smaller chunks for large files
- Enable Cleanup: Ensure automatic cleanup is enabled
- Check File Sizes: Exclude very large files if not needed
- Monitor Workers: Reduce worker count if needed
Cache Issues
- Clear Cache:
juro cache clear - Check Cache Size: Monitor cache disk usage
- Verify TTL: Check cache time-to-live settings
- Update Rules: Clear cache when rules change
📊 Performance Comparison
Before Optimization (v1.0.0)
- Small Projects: 5-10 seconds
- Medium Projects: 30-60 seconds
- Large Projects: 5-10 minutes
- Memory Usage: High and inconsistent
- Cache Hit Rate: 0% (no caching)
After Optimization (v2.0.0)
- Small Projects: < 1 second (5-10x faster)
- Medium Projects: < 10 seconds (3-6x faster)
- Large Projects: < 60 seconds (5-10x faster)
- Memory Usage: Optimized and predictable
- Cache Hit Rate: 90%+ (massive improvement)
🚀 Advanced Performance Features
Adaptive Scaling
- Auto-Scaling: Automatically adjust worker count based on load
- Load Balancing: Distribute tasks evenly across workers
- Resource Monitoring: Real-time monitoring of system resources
- Dynamic Optimization: Adjust settings based on performance metrics
Intelligent Caching
- Predictive Caching: Pre-cache likely-to-be-scanned files
- Smart Invalidation: Only invalidate affected cache entries
- Compression: Compress cached data to save disk space
- Distributed Caching: Share cache across multiple instances
Memory Optimization
- Garbage Collection: Proactive memory cleanup
- Memory Pooling: Reuse memory allocations
- Streaming Processing: Process files without loading entirely into memory
- Memory Profiling: Detailed memory usage analysis
📚 Performance Resources
Configuration Guides
Monitoring Tools
Troubleshooting
Ready to optimize your compliance scanning performance? Get started with Juro's performance features and experience enterprise-grade scanning speed!