Skip to main content

Performance Optimization

Juro v2.0.0 includes enterprise-grade performance optimization designed to handle large codebases efficiently with intelligent caching, parallel processing, and advanced memory management.

🚀 Performance Features

Intelligent Caching System

  • Rule Pack Caching: 90%+ cache hit rate for repeated scans
  • Scan Result Caching: Instant results for unchanged files
  • Incremental Scanning: Only scan changed files for faster subsequent runs
  • Smart Cache Invalidation: Automatic cache updates when rules change

Parallel Processing Architecture

  • Worker Pool: Configurable 1-8 workers for optimal performance
  • File Chunking: Process large files in manageable chunks
  • Task Distribution: Intelligent work distribution across workers
  • Load Balancing: Dynamic worker allocation based on system resources

Memory Management

  • Chunked Processing: 10MB chunk size for large file processing
  • Memory Streaming: Process files larger than 50MB efficiently
  • Resource Cleanup: Automatic cleanup of temporary files and memory
  • Memory Monitoring: Real-time memory usage tracking and optimization

📊 Performance Benchmarks

Scanning Speed

Project SizeFilesScan TimeMemory UsageCache Hit Rate
Small< 100< 1 second< 50MB95%+
Medium100-1000< 10 seconds< 200MB90%+
Large1000+< 60 seconds< 500MB85%+
Enterprise10,000+< 5 minutes< 1GB80%+

Resource Optimization

  • CPU Usage: Optimized for multi-core systems
  • Memory Efficiency: 4x better than sequential processing
  • Disk I/O: Minimized through intelligent caching
  • Network: Reduced API calls through local caching

🏗️ Architecture Components

CacheManager

class CacheManager {
// Rule pack caching
async cacheRulePack(regulation: string, version: string, rules: Rule[]): Promise<void>

// Scan result caching
async cacheScanResult(filePath: string, hash: string, result: ScanResult): Promise<void>

// Cache retrieval
async getCachedResult(filePath: string, hash: string): Promise<ScanResult | null>

// Cache invalidation
async invalidateCache(pattern: string): Promise<void>
}

WorkerPool

class WorkerPool {
// Worker management
async createWorkers(count: number): Promise<void>
async distributeTask(task: ScanTask): Promise<ScanResult>
async scaleWorkers(targetCount: number): Promise<void>

// Performance monitoring
getWorkerStats(): WorkerStats[]
getQueueLength(): number
getAverageProcessingTime(): number
}

MemoryManager

class MemoryManager {
// Memory optimization
async processLargeFile(filePath: string, chunkSize: number): Promise<ScanResult>
async cleanupMemory(): Promise<void>
async monitorMemoryUsage(): Promise<MemoryStats>

// Resource management
async allocateMemory(size: number): Promise<Buffer>
async deallocateMemory(buffer: Buffer): Promise<void>
}

Performance Configuration

Worker Pool Configuration

{
"performance": {
"workerPool": {
"minWorkers": 1,
"maxWorkers": 8,
"defaultWorkers": 4,
"autoScale": true
}
}
}

Caching Configuration

{
"performance": {
"caching": {
"enabled": true,
"ttl": 3600,
"maxSize": "1GB",
"strategy": "LRU"
}
}
}

Memory Configuration

{
"performance": {
"memory": {
"chunkSize": "10MB",
"maxFileSize": "50MB",
"cleanupInterval": 300,
"monitoringEnabled": true
}
}
}

🔧 Performance Tuning

For Small Projects (< 100 files)

# Optimize for speed
juro scan --path ./src --workers 1 --cache-enabled true

For Medium Projects (100-1000 files)

# Balanced performance
juro scan --path ./src --workers 4 --cache-enabled true --chunk-size 5MB

For Large Projects (1000+ files)

# Optimize for throughput
juro scan --path ./src --workers 8 --cache-enabled true --chunk-size 10MB --incremental

For Enterprise Projects (10,000+ files)

# Maximum performance
juro scan --path ./src --workers 8 --cache-enabled true --chunk-size 20MB --incremental --parallel

📈 Performance Monitoring

Real-Time Metrics

# Enable performance monitoring
juro scan --path ./src --monitor-performance --output-format json

Performance Report

{
"performance": {
"scanDuration": 1250,
"filesProcessed": 150,
"cacheHits": 135,
"cacheMisses": 15,
"cacheHitRate": 0.9,
"memoryUsage": {
"peak": "245MB",
"average": "180MB",
"final": "120MB"
},
"workerStats": {
"activeWorkers": 4,
"averageTaskTime": 125,
"queueLength": 0
}
}
}

🎯 Performance Best Practices

1. Enable Caching

# Always enable caching for better performance
juro scan --path ./src --cache-enabled true

2. Use Incremental Scanning

# Only scan changed files
juro scan --path ./src --incremental

3. Optimize Worker Count

# Match worker count to CPU cores
juro scan --path ./src --workers $(nproc)

4. Configure Memory Limits

# Set appropriate memory limits
juro scan --path ./src --max-memory 1GB --chunk-size 10MB

5. Use Appropriate File Patterns

# Exclude unnecessary files
juro scan --path ./src --exclude "**/node_modules/**" --exclude "**/dist/**"

🔍 Performance Troubleshooting

Slow Scanning

  1. Check Cache Status: Ensure caching is enabled
  2. Verify Worker Count: Use appropriate number of workers
  3. Review File Patterns: Exclude unnecessary files
  4. Monitor Memory Usage: Check for memory leaks

High Memory Usage

  1. Reduce Chunk Size: Use smaller chunks for large files
  2. Enable Cleanup: Ensure automatic cleanup is enabled
  3. Check File Sizes: Exclude very large files if not needed
  4. Monitor Workers: Reduce worker count if needed

Cache Issues

  1. Clear Cache: juro cache clear
  2. Check Cache Size: Monitor cache disk usage
  3. Verify TTL: Check cache time-to-live settings
  4. Update Rules: Clear cache when rules change

📊 Performance Comparison

Before Optimization (v1.0.0)

  • Small Projects: 5-10 seconds
  • Medium Projects: 30-60 seconds
  • Large Projects: 5-10 minutes
  • Memory Usage: High and inconsistent
  • Cache Hit Rate: 0% (no caching)

After Optimization (v2.0.0)

  • Small Projects: < 1 second (5-10x faster)
  • Medium Projects: < 10 seconds (3-6x faster)
  • Large Projects: < 60 seconds (5-10x faster)
  • Memory Usage: Optimized and predictable
  • Cache Hit Rate: 90%+ (massive improvement)

🚀 Advanced Performance Features

Adaptive Scaling

  • Auto-Scaling: Automatically adjust worker count based on load
  • Load Balancing: Distribute tasks evenly across workers
  • Resource Monitoring: Real-time monitoring of system resources
  • Dynamic Optimization: Adjust settings based on performance metrics

Intelligent Caching

  • Predictive Caching: Pre-cache likely-to-be-scanned files
  • Smart Invalidation: Only invalidate affected cache entries
  • Compression: Compress cached data to save disk space
  • Distributed Caching: Share cache across multiple instances

Memory Optimization

  • Garbage Collection: Proactive memory cleanup
  • Memory Pooling: Reuse memory allocations
  • Streaming Processing: Process files without loading entirely into memory
  • Memory Profiling: Detailed memory usage analysis

📚 Performance Resources

Configuration Guides

Monitoring Tools

Troubleshooting


Ready to optimize your compliance scanning performance? Get started with Juro's performance features and experience enterprise-grade scanning speed!